Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Clin Virol ; 139: 104847, 2021 06.
Article in English | MEDLINE | ID: covidwho-1201793

ABSTRACT

BACKGROUND: The vast majority of COVID-19 patients experience a mild disease. However, a minority suffers from critical disease with substantial morbidity and mortality. OBJECTIVES: To identify individuals at risk of critical COVID-19, the relevance of a seroreactivity against seasonal human coronaviruses was analyzed. METHODS: We conducted a multi-center non-interventional study comprising 296 patients with confirmed SARS-CoV-2 infections from four tertiary care referral centers in Germany and France. The ICU group comprised more males, whereas the outpatient group contained a higher percentage of females. For each patient, the serum or plasma sample obtained closest after symptom onset was examined by immunoblot regarding IgG antibodies against the nucleocapsid protein (NP) of HCoV 229E, NL63, OC43 and HKU1. RESULTS: Median age was 60 years (range 18-96). Patients with critical disease (n=106) had significantly lower levels of anti-HCoV OC43 nucleocapsid protein (NP)-specific antibodies compared to other COVID-19 inpatients (p=0.007). In multivariate analysis (adjusted for age, sex and BMI), OC43 negative inpatients had an increased risk of critical disease (adjusted odds ratio (AOR) 2.68 [95% CI 1.09 - 7.05]), higher than the risk by increased age or BMI, and lower than the risk by male sex. A risk stratification based on sex and OC43 serostatus was derived from this analysis. CONCLUSIONS: Our results suggest that prior infections with seasonal human coronaviruses can protect against a severe course of COVID-19. Therefore, anti-OC43 antibodies should be measured for COVID-19 inpatients and considered as part of the risk assessment for each patient. Hence, we expect individuals tested negative for anti-OC43 antibodies to particularly benefit from vaccination against SARS-CoV-2, especially with other risk factors prevailing.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/etiology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Phosphoproteins/immunology , Risk Factors , Young Adult
2.
Cell Death Dis ; 12(3): 258, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1132059

ABSTRACT

The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19 patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as well as their derivatives, were altered in critical COVID-19 patient's plasma as compared to mild COVID-19 patients. Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.


Subject(s)
COVID-19/blood , Metabolome , SARS-CoV-2/metabolism , Antibodies, Monoclonal, Humanized/administration & dosage , Biomarkers/blood , COVID-19/diagnosis , Female , Humans , Male , Metabolomics , Prognosis , COVID-19 Drug Treatment
3.
Oncoimmunology ; 9(1): 1857112, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-990263

ABSTRACT

Formyl peptide receptor 1 (FPR1) is a pattern-recognition receptor that detects bacterial as well as endogenous danger-associated molecular patterns to trigger innate immune responses by myeloid cells. A single nucleotide polymorphism, rs867228 (allelic frequency 19-20%), in the gene coding for FPR1 accelerates the manifestation of multiple carcinomas, likely due to reduced anticancer immunosurveillance secondary to a defect in antigen presentation by dendritic cells. Another polymorphism in FPR1, rs5030880 (allelic frequency 12-13%), has been involved in the resistance to plague, correlating with the fact that FPR1 is the receptor for Yersinia pestis. Driven by the reported preclinical effects of FPR1 on lung inflammation and fibrosis, we investigated whether rs867228 or rs5030880 would affect the severity of coronavirus disease-19 (COVID-19). Data obtained on patients from two different hospitals in Paris refute the hypothesis that rs867228 or rs5030880 would affect the severity of COVID-19.


Subject(s)
COVID-19/genetics , COVID-19/virology , Neoplasms/genetics , Plague/genetics , Receptors, Formyl Peptide/genetics , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/pathology , Female , Humans , Immunity, Innate , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/pathology , Neoplasms/virology , Pandemics , Paris/epidemiology , Plague/microbiology , Plague/pathology , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL